SYLLABUS OF

M. TECH (Hydraulics and Water Resources Engineering)

II YEAR

(CBCS)

DEPARTMENT OF CIVIL ENGINEERING

INTEGRAL UNIVERSITY LUCKNOW

SYLLABI AND EVALUATION SCHEME

M.Tech. (Hydraulics and Water Resources Engineering)

(w.e.f. Batch 2020-21)

Semester – III

				F	Period	s	Credits	E	valuat	ion Sche	eme	
S. No.		Code No	Name of Subject		Т	Р	С	-	ontinu ssessm (CA)	ent	Exam ESE	Subject Total
								UE	ТА	Total		
1	DE		Elective - II		1	-	4	40	20	60	40	100
2	DE		Elective - III	3	1	-	4	40	20	60	40	100
3	DE		Elective - IV	3	1	-	4	40	20	60	40	100
4	DC	CE675	Directed Study	-	-	-	4	-	-	-	100	100
5	DC	CE699	M.Tech Dissertation	-	-	-	4	-	-	60	40	100
			20					500				

Semester – IV

				P	eriod	s	Credits	ŀ	Evaluat	tion Sch	eme	
S. No.			Name of Subject	L	L T		С	-	ontinu ssessm (CA)	ent	EXAM ESE	Subject Total
								UE	ТА	Total		
1	DC	CE699	M.Tech Dissertation	-	-	-	4	-	-	60	40	100
2	DC	CE699	M.Tech Dissertation	-	-	-	4	-	-	60	40	100
3	DC	CE699	M.Tech Dissertation	-	-	-	4	-	-	60	40	100
4	DC	CE699	M.Tech Dissertation		-	-	4	-	-	60	40	100
			16					400				

TA- Teacher Assessment; **ESE** – End Semester Examination; **CT-** Cumulative Test. Note: Duration of ESE shall be 03 (Three) hours per subject

M. Tech (Hydraulics and Water Resources Engineering)

List of the Elective Paper:

<u>Elective – I</u>

CE555	Mathematics and Statistics for Hydraulic Engineering
CE558	Modeling Simulation and Optimization
CE560	Advanced Numerical Analysis
CE561	Flood and Drought

<u>Elective – II</u>

CE660	Remote Sensing and GIS in Water Resources Engineering
CE661	Hydro Power Engineering
CE662	Advanced Irrigation Engineering

<u>Elective – III</u>

CE664	Fluvial Hydraulics
CE665	Application of Soft Computing Technique in Hydrology
CE666	River Engineering

Elective – IV

CE668	Hydraulic Structures
CE669	Watershed Management
CE670	Earth and Rock Fill Dams

TA- Teacher Assessment; ESE- End Semester Examination; CT- Cumulative Test Note: Duration of ESE shall be 03 (Three) hours per subject.

Effective from Sessie	Effective from Session: 2019-20												
Course Code	CE660	Title of the Course	Remote Sensing and GIS in Water Resources Engineering	L	Т	Р	С						
Year	II	Semester	III	3	1	0	4						
Pre-Requisite	NIL	Co-requisite	NIL										
Course Objectives	To know resources	1 1	nd applications of Remote sensing and GIS in the	e con	itext	of w	ater						

	Course Outcomes					
CO1	Students have ability to understand Remote Sensing, Principles of remote sensing, Energy interactions in the atmosphere					
COI	and Energy interactions with earth surface features.					
CO2	Students have ability to understand the Satellites and orbits, Spatial and spectral resolutions, Multispectral, Features of the					
02	remote sensing satellites.					
CO3	Students have ability to understand the GIS, Data model and data structure, editing of data and method of interpolation.					
CO4	Students will learn about the DEM, Sources of digital elevation data, Drainage pattern and catchment area delineation.					
CO5	Students will learn about the application of remote sensing in watershed management and rainfall –runoff modelling.					

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Remote Sensing	Introduction, Types, Principles of remote sensing, EMR Spectrum, Energy sources and radiation principles, Energy interactions in the atmosphere, Energy interactions with earth surface features.	08	CO1
2	Remote Sensing Systems	Satellites and orbits, Spatial and spectral resolutions, Multispectral, Thermal and Hyper spectral remote sensing, Features of the remote sensing satellites.	08	CO2
3	Geographical Information System (GIS)	08	CO3	
4	Digital Image Processing And Elevation Modeling	Introduction, Types of DEM, Sources of digital elevation data, Radar interferometry, Shuttle radar topographic mission data, Drainage pattern and catchment area delineation.	08	CO4
5	Remote Sensing Applications	Applications in watershed management, Rainfall-runoff modelling, Irrigation management, Flood mapping, Drought assessment.	08	CO5
Refere	ence Books:			
Chow,	V.T., 1988: Advances	in Hydro Science McGraw Hill.		
		rpretation in Geology. Allen and Unwin		
		ensing Geology. Springer Verlag		
	V.C., 1961: Photogeol			
		Groundwater Hydrology. John Wiley		
	ning Source:			
-	/nptel.ac.in/courses/105			
https://	/nptel.ac.in/courses/105	108077/		

	Course Articulation Matrix: (Mapping of COs with POs and PSOs)													
PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO	101	102	105	104	105	100	10/	100	109	1010	1011	1012	1501	1502
CO1	2	1	0	1	1	0	2	0	1	1	0	0	2	3
CO2	2	1	0	1	1	0	1	0	1	0	1	2	2	3
CO3	3	1	2	2	2	0	1	0	1	0	1	1	2	3
CO4	3	1	2	1	1	0	0	0	1	0	1	2	2	3
CO5	3	1	3	1	1	1	1	0	1	0	0	2	2	3

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session:	Effective from Session: 2019-20												
Course Code	CE661	Title of the Course	Hydro Power Engineering	L	Т	Р	С						
Year	II	Semester	III	3	1	0	4						
Pre-Requisite	NIL	Co-requisite	NIL										
Course Objectives		the hydropower, types of ies and design of surge tar	hydropower plant, Penstock, Turbine, design o k	f inta	ke, w	ater							

	Course Outcomes
CO1	Students will learn about the hydropower energy, hydropower development in India, Hydropower plants, Surface and
COI	underground power stations, Low medium-high head plants-layout and pumped storage plants
CO2	Students will learn about the penstocks, Design of Penstocks, design criteria of power canals, Location, function and
02	types of intakes and design of intakes
CO3	Students will learn about the Rigid and elastic water column theories, water hammer pressure. Behavior of surge tanks,
COS	types of surge tanks and hydraulic design of tank
CO4	Students will learn about the Hydraulic turbines and types and classification, constructional features, hydraulic analysis,
004	characteristic curves, governing of turbine, hydraulic principles and design
CO5	Students will learn about the Power house structures, Power house substructure and Power house superstructure,
005	Layout dimensions and deign considerations

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Introduction	Sources and forms of energy, hydropower development in India, Hydropower plants, classification: Surface and underground power stations, Low medium-high head plants-layout and components, pumped storage plants, tidal power plants, Load and power studies	08	CO1
2	Penstocks and Power Canal	Classification of penstocks, Design of Penstocks, economic diameter, bends, anchor blocks, surges in canals design criteria of power canals. Intake structures: Location function and types of intakes, energy losses at intake trash rock, design of intakes	08	CO2
3	Water Hammer and Surge Tank	Rigid and elastic water column theories, water hammer pressure. Behavior of surge tanks, types of surge tanks, hydraulic design, design of simple surge tank-stability	08	CO3
4	Turbines	Hydraulic turbines and types and classification, constructional features, hydraulic analysis, selection, characteristic curves, governing of turbine, drafts tubes-types, hydraulic principles and design. Gates and valves- types. Design of air vent.	08	CO4
5	Power House Planning	Powerhouse structures, Powerhouse substructure and Powerhouse superstructure Layout and dimensions, deign considerations.	08	CO5
	ence Books:			
	power structures b			
		g practice by Brown J.G		
		nt (Vols. I, II and III) by E. Mosonyi		
	•	by VenTe Chow		
		r Creager and Justin		
	ning Source:			
		ver/edu/pamphlet.pdf		
https://	nptel.ac.in/courses	5/11210/291		

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)												
PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO	roi roz ro	105	104	105	100	10/	100	109	FOID	rom	F012	1301	1502	
CO1	2	2	2	1	0	1	2	0	2	1	0	1	2	3
CO2	2	1	3	2	0	1	0	0	2	1	1	2	2	3
CO3	2	1	3	2	0	1	0	0	1	0	1	0	2	3
CO4	2	2	3	1	0	1	1	0	2	1	1	2	2	3
CO5	2	0	3	2	0	1	0	0	0	1	1	2	2	3

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Name & Sign of Program Coordinator	Sign & Seal of HoD
	~

Effective from Session: 2019-20												
Course Code	CE662	Title of the Course	Advanced Irrigation Engineering	L	Т	P	С					
Year	II	Semester	III	3	1	0	4					
Pre-Requisite	NIL	Co-requisite	NIL									
Course Objectives	 managem To learn measurem To introdu To introdu 	ent. about the classification nent. uce the basic Water require the Surface irrigation	in India, need of irrigation, advantages and Crite on of soil water, soil water plant relationshi airement of crops, Evapotranspiration and consum n methods, types and canal design igation and components design.	ip ar	nd soi	l mois	sture					

	Course Outcomes									
CO1	To understand the water resources in India and their needs and criteria for good irrigation management.									
CO2	To understand the basic concept of soil water and plant relationship and soil moisture measurement.									
CO3	To understand the basic concept of requirement of water for a crops and consumptive use of water.									
CO4	To understand the methods of surface irrigation, types and canal design.									
CO5	To understand the sprinkler and drip irrigation and criteria of adopting the method of irrigation and design of the									
05	components									

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Development of Irrigation	Water Resources of India, Irrigation Need, Advantages and Disadvantages, National Water Policy and Inadequacy of Irrigation Management, Criteria for good Irrigation management.	08	CO1
2	Soil Water Plant Relationship	Soil physical properties influencing Soil-water relationship-Forms and occurrence of Soil Water- Classification of Soil Water- Soil Water Constants- Energy concept of Soil Water-Forces acting on Soil Water- Soil Water Potential concept- Soil Water retention- Soil Moisture Measurement.	08	CO2
3	Crop Water RequirementWater requirement of crops- Evapotranspiration and Consumptive use- Methods of estimating Evapotranspiration- Effective Rainfall- Irrigation Requirement-Duty of Water- Irrigation Efficiencies- Irrigation Scheduling- Irrigation measurement.		08	CO3
4	Surface Irrigation Methods	Canal network and canal design- Surface irrigation methods- Types- Border irrigation, Furrow irrigation and Strip irrigation- Specifications, Hydraulics and Design.	08	CO4
5	Drip and Sprinkler Irrigation Method	Sprinkler and Drip- History and development, Types, Components, Design and Layout, Performance Evaluation, Operation and Maintenance.	08	CO5
Refere	ence Books:			
Majum	ndar D.P," Irrigation W	ater Management Principles and Practices", Prentice Hall of India, New Delhi, 2	2004.	
Michae	el A. M., "Irrigation Th	eory and Practice", Vikas Publishing House, New Delhi, 2009.		
Sharma	a R.K and Sharma T.K	, "Irrigation Engineering", S. Chand, New Delhi, 2008.		
e-Lear	ning Source:			
1 //		1100150/		

https://nptel.ac.in/courses/105102159/ https://nptel.ac.in/courses/105105110/

Course Articulation Matrix: (Mapping of COs with POs and PSOs)													
PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	POQ	PO10	PO11	PO12	PSO1	PSO2
101	102	105	104	105	100	10/	100	10)	1010	1011	1012	1501	1502
3	1	0	0	0	1	2	0	0	0	2	0	0	0
3	1	1	0	0	1	2	0	0	0	0	0	0	0
2	2	1	0	0	2	2	0	0	0	0	0	0	0
2	0	3	0	0	2	1	1	1	2	1	1	0	0
2	1	3	0	0	2	2	1	1	2	1	1	0	0
	3 2 2	3 1 3 1 2 2 2 0	PO1 PO2 PO3 3 1 0 3 1 1 2 2 1 2 0 3 2 1 3	PO1 PO2 PO3 PO4 3 1 0 0 3 1 1 0 2 2 1 0 2 0 3 0 2 1 3 0 2 1 3 0	PO1PO2PO3PO4PO53100031100221002030021300	PO1PO2PO3PO4PO5PO6310001311001221002203002213002	PO1PO2PO3PO4PO5PO6PO731000123110012221002220300212130022	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 3 1 0 0 0 1 2 0 3 1 1 0 0 1 2 0 3 1 1 0 0 1 2 0 2 2 1 0 0 2 2 0 2 0 3 0 0 2 1 1 2 1 3 0 0 2 2 1	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 3 1 0 0 0 1 2 0 0 3 1 1 0 0 1 2 0 0 3 1 1 0 0 1 2 0 0 2 2 1 0 0 2 2 0 0 2 0 3 0 0 2 1 1 1 2 1 3 0 0 2 2 1 1	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 3 1 0 0 0 1 2 0 0 0 3 1 1 0 0 1 2 0 0 0 2 2 1 0 0 2 2 0 0 0 2 0 3 0 0 2 1 1 2 2 1 3 0 0 2 1 1 2 2 1 3 0 0 2 1 1 2	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 3 1 0 0 1 2 0 0 0 2 3 1 1 0 0 1 2 0 0 2 3 1 1 0 0 1 2 0 0 0 2 2 1 0 0 2 2 0 0 0 0 2 0 3 0 0 2 1 1 1 2 1 2 1 3 0 0 2 2 1 1 2 1	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 3 1 0 0 1 2 0 0 0 2 0 3 1 1 0 0 1 2 0 0 0 2 0 3 1 1 0 0 1 2 0 0 0 2 0 2 2 1 0 0 2 2 0	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 3 1 0 0 1 2 0 0 0 2 0 0 3 1 1 0 0 1 2 0 0 0 2 0 0 3 1 1 0 0 1 2 0 0 0 2 0 0 2 2 1 0 0 2 2 0 <t< th=""></t<>

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2019-20										
Course Code	CE664	Title of the Course	Fluvial Hydraulics	L	Т	Р	С			
Year	II	Semester	III	3	1	0	4			
Pre-Requisite	NIL	Co-requisite	NIL							
Course Objectives			nt transport in alluvial channels, design the stabl blems encountered in fluvial hydraulics	e allı	uvial c	chann	el			

		Course Outcomes
С		dents will understand about the Reservoir sedimentation, site selection, critical tractive force of cohesion less and cohesive terials, regimes of flow, importance and prediction of regimes of flow.
C		dents will understand about the Resistance to flow and velocity distribution in alluvial streams, Bed load equations,
	susp	pended load, and general considerations about sediment distribution equation.
0	Stuc	dents will have ability to understand about the Total load transport, microscopic and macroscopic methods based on a
C		gle size and fraction wise size calculations.
C	Stuc	dents have ability to Design of stable channels in alluvium: variables in channel design, general comments on regime and
C		ctive force methods of channel design.
C	Stuc	dents will understand the Bed level variation in alluvial streams, local scour, degradation, aggradations, silting of reservoir,
C		imation of silt, distribution of sediment in reservoir, life of reservoir, and sediment flow through pipes.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO					
1	Sediment Properties and Reservoir	Sediment properties, Reservoir sedimentation, types of reservoirs, site selection, incipient motion of sediment, competent velocity, lift concept, critical tractive force of cohesion less and cohesive materials, regimes of flow, ripple and dune regimes, anti-dune regime, importance and prediction of regimes of flow	08	CO1					
2	Sediment Distribution Properties	Resistance to flow and velocity distribution in alluvial streams, Bed load equations based on dimensional considerations and semi theoretical equations, suspended load, general considerations about sediment distribution equation.	08	CO2					
3	Sediment Sampling System	Total load transport, microscopic and macroscopic methods based on a single size and fraction wise size calculations, Sediment samplers and sampling, bed load and suspended load sampling	08	CO3					
4	Design criteria of Stable Channels -I	Design of stable channels in alluvium: variables in channel design, general comments on regime and tractive force methods of channel design	08	CO4					
5	Design Criteria of Stable Channels -II	Bed level variation in alluvial streams, local scour, degradation, aggradation, silting of reservoir, estimation of silt, distribution of sediment in reservoir, life of reservoir, sediment flow through pipes	08	CO5					
Refere	ence Books:								
	arde and K G Rangal hers, New Delhi	Raju, Mechanics of sediment transport through alluvial Channels, New Age Interna	tional (P) L	imited,					
	W R White, A D Crabbe, H Milli, Sediment Transport: New Approach and Analysis," Journal of the Hydraulics Division, HY11, American Society of Civil Engineers "Shore Protection Manual," Washington, 1975								
		lary Hydraulics, CRC Press, Taylor & Francis, USA.							
e-Lear	ning Source:								
https://	/nptel.ac.in/content/s	torage2/courses/105105110/pdf/m3l07.pdf							

https://nptel.ac.in/content/storage2/courses/105105110/pdf/m3107.pdf

				Course	Articul	ation M	atrix: (1	Mapping	g of CO	s with PC	s and PS	Os)		
PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO	101	102	105	104	105	100	10/	100	109	1010	1011	1012	1501	1502
CO1	2	2	0	2	0	1	0	0	1	2	0	1	2	3
CO2	2	1	0	0	2	1	0	0	2	1	0	1	2	3
CO3	2	1	2	1	1	0	1	0	2	1	0	0	2	3
CO4	2	2	3	2	0	0	1	0	1	2	1	0	2	3
CO5	2	2	3	2	0	0	1	0	2	1	0	1	2	3

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session	Effective from Session: 2019-20											
Course Code	CE665	Title of the Course	Application of Soft Computing Technique in Hydrology		Т	Р	С					
Year	Π	Semester	III	3	1	0	4					
Pre-Requisite	NIL	NIL Co-requisite NIL										
Course Objectives	To learn the basic concepts of Soft Computing, To become familiar with various techniques like neural networks, genetic algorithms and fuzzy systems. To apply soft computing techniques to solve problems.											

	Course Outcomes							
CO1	Students will be able to understand the Fuzzy computing, neural computing, genetic algorithms, application in water							
COI	resources engineering and Model of artificial neuron							
CO2	Students will be able to understand the back propagation learning, back propagation algorithm, associate memory: description							
002	and Auto-associate memory							
CO3	Students will be able to understand Recap -supervise, unsupervised, back prop algorithm, competitive learning and							
003	unsupervised ART Clustering.							
CO4	Students will be able to understand the fuzzy set membership, operations, properties Fuzzy relations, fuzzy logic, fuzzy							
04	inference and fuzzy rule based system.							
CO5	Students will be able to understand the operators of genetic algorithm, basic genetic algorithm. integration of neural networks,							
05	Fuzzy back propagation networks and Fuzzy associative memories							

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO				
1	Introduction to Soft Computing	Introduction: Fuzzy computing, neural computing, genetic algorithms, associate memory, adoptive resonance theory, application in water resources engineering. Fundamentals of neural network: Introduction, model of artificial neuron. Architectures, learning methods, Taxonomy of NN Systems. Single layer NN systems, applications	08	CO1				
2	Back Propagation Network	Background, back propagation learning, back propagation algorithm, associate memory: description, Auto-associate memory, bidirectional Hertoassociative	08	CO2				
3	Adaptive Resonance Theory	Resonance Theorystability – plasticity Dilemma (SPD) ART networks Iterative Clustering, unsupervised ART Clustering.						
4	Fuzzy Set Theory	\sim System: introduction flizzy logic Elizzification flizzy interence flizzy fille based						
5	Fundamentals of Genetic Algorithms	08	CO5					
	ence Books:							
	Neural networks, Fuzzy logic and genetic algorithms: synthesis and applications, S. Rajasekaran, G A vijaylakshami, PHI							
	Chin Teng Lin, C S George Lee Neuro Fuzzy systems PHI.							
		of artificial neural network ,MIT Press						
	ning Source:							
https://	nptel.ac.in/courses/1	06/105/106105173/						

				Course	Articul	ation M	atrix: (I	Mapping	g of CO	s with PC	s and PS	Os)		
PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO	101	102	105	104	105	100	10/	100	10)	1010	1011	1012	1501	1502
CO1	2	2	3	2	3	0	0	0	1	0	2	1	2	3
CO2	1	2	0	2	2	0	1	0	1	1	2	0	2	3
CO3	2	2	1	0	2	0	0	0	1	1	1	0	2	3
CO4	2	2	0	0	2	0	0	0	1	0	1	1	2	3
CO5	2	2	1	0	3	0	1	0	1	0	0	1	2	3

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session:	Effective from Session: 2019-20											
Course Code	CE666	Title of the Course	River Engineering	L	Т	Р	С					
Year	II	Semester	III	3	1	0	4					
Pre-Requisite	NIL	Co-requisite	NIL									
Course Objectives		• To understand theoretical concepts of water and sediment movements in rivers and also to inculcate the benefits of fluvial system to the society.										

	Course Outcomes
CO1	To understand the Primary function of River, Water and Sediment loads of river, Rivers in India.
CO2	To understand the Physical Properties of river and Equations of different types of flow in rivers, velocity profile, uniform and non-uniform, turbulence, Diffusion and Dispersion
CO3	To understand about the Stability of Channel, hydraulic geometry of downstream, meandering, River dynamics, degradation and aggradations of river bed.
CO4	To understand about Mapping, Stage, Discharge Measurements in river, Sediments, Bed and suspended load, Rigid and mobile bed, Water Quality and ecological model
CO5	To understand the river training work and river regulation work, flood plain measurement and river stabilization

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	River Functions	Primary function of a river – River uses and measures – Water and Sediment loads of river – Rivers in India, Himalaya and Peninsular	08	CO1
2	River Hydraulics	Physical Properties and Equations – Steady flow in rivers – uniform and non-uniform – Turbulence and velocity profiles –resistance coefficient, Boundary conditions and back waters, Transitions, Rating Curve, Unsteady flow in rivers: Propagative of surface waves – Characteristics, flood waves – kinematic and diffusion analogy – velocity of propagation of flood waves–Flood wave –Maximum Fundamental relationships for flow and transport, Diffusion and Dispersion	08	CO2
3	River Mechanics	River Equilibrium : Stability of Channel – regime relations – river bend equilibrium – hydraulic geometry of downstream – Bars and meandering - River dynamics – degradation and aggradation of river bed – Confluences and branches – River Data base.	08	CO3
4	River Surveys and Model	Mapping, Stage and Discharge Measurements, Sediments, Bed and suspended load, Physical hydraulic Similitude, Rigid and mobile bed, Mathematical – Finite one dimensional, multi – dimensional – Water Quality and ecological model	08	CO4
5	River Management	River training works and river regulation works – Flood plain management – waves and tides in Estuaries – Interlinking of rivers – River Stabilization	08	CO5

Reference Books:

JansonPL.Ph., LvanBendegamJvanden Berg, Mdevries A. Zanen (Editors), Principles of River Engineering – The non-tidal alluvial rivers – Pitman, 1979.

Pierre Y. Julien., River Mechanics, Cambridge University Press, 2002

K.L Rao, INDIA's WATER WEALTH - Orient Longman Ltd., 1979

RangaRaju – New Age Int.Publications

e-Learning Source:

https://nptel.ac.in/content/storage2/courses/105105110/pdf/m6l01.pdf

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)												
PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO	101	102	105	104	105	100	10/	100	10)	1010	1011	1012	1501	1502
CO1	3	1	0	0	0	2	2	0	0	1	1	0	1	1
CO2	2	2	1	2	0	2	2	0	0	0	1	1	2	2
CO3	3	2	3	1	0	1	1	0	0	0	1	1	2	2
CO4	3	2	1	1	0	1	3	0	0	0	1	0	2	2
CO5	2	3	2	1	0	1	1	0	0	2	1	1	2	2
	•	1	L	Correlat	ion. 2.	Modera	to Corre	lation	3. Sube	tantial Co	relation			

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session:	Effective from Session: 2019-20						
Course Code	CE668	Title of the Course	Title of the Course Hydraulic Structure		Т	Р	С
Year	Π	Semester	III	3	1	0	4
Pre-Requisite	NIL	Co-requisite	NIL				
Course Objectives	• To un	derstand the Design criteria, low the safety criteria, for	f site selection of dam and Types of dam, Elementary profile of gravity dam and stabi ce acting on the gravity dam, function of	•			ergy

	Course Outcomes
CO1	Students will be able to understand the criteria of site Selection of dam, Forces acting on darns, Elementary profile of a
COI	gravity dam, Stability analysis and methods of determination of shear stress.
CO2	Students will be able to understand the Arch dam, Types of arch dams, Design of arch dam, Valleys suited for arch darns,
02	Thin cylinder theory, Most economical central angle and Effects of foundation elasticity on arch dam.
CO3	Students will be able to understand the Buttress dam, Types of buttress darn, Design principles, Buttress design by Unit
005	column theory and Basic shape of buttress.
CO4	Students will be able to understand the Spillways, Types of spillways, Design principles of spillway, Hydraulic design of
004	spillways and Energy dissipation below spillways.
CO5	Students will be able to understand Theory of similarity, dimensional analysis, Basic concepts, Froude law, Reynolds law,
005	Mach law, Cavitations number and Modeling technique.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO		
1	Gravity Dams	Introduction, Selection of dam sites, Forces acting on darns, Elementary profile of a gravity dam, Stability analysis and Safety criteria, Graphical determination of shear stress, Galleries. Difference between weirs & barrages.	08	CO1		
2	Arch Dam	Definition, Types of arch dams, Design of arch dam, Valleys suited for arch darns, Thin cylinder theory, Most economical central angle, Effects of foundation elasticity on arch dam.	08	CO2		
3	Buttress Dam	Types of buttress darn, Selection of buttress dam, Most economical profile having no tension, Design principles, Buttress design by Unit column theory, Basic shape of buttress.	08	CO3		
4	Spillways and Energy Dissipaters	Spillways, Types of spillways, Design principles of spillway, Hydraulic design of spillways, Energy dissipation below spillways, Bucket type energy dissipaters, Design of various types of stilling basins.	08	CO4		
5	Hydraulic Models	Theory of similarity, dimensional analysis, Basic concepts, Froude law, Reynolds law, Mach law, Cavitation number, Modeling technique.	08	CO5		
Refere	ence Books:					
Engine	ering for Dams by Cre	ager, Justin & Hinds, Willey Eastern Pvt. Ltd., Delhi.				
	•	nney, Oxford & IBH Pub. Co. Delhi.				
-		K.B. Khushalani, Oxford & MN, Delhi.				
Design of Weirs on Permeable Foundations, CBIP Pub. No 20, Delhi.						
	Garg, S.K., "Irrigation Engineering and Hydraulic Structures," Khanna Publishers.					
	e-Learning Source:					
	•	age2/courses/105105110/pdf/m4l06.pdf				
https://	nptel.ac.in/content/stor	age2/courses/105105110/pdf/m4l04.pdf				

				Course	Articul	ation M	l <mark>atrix:</mark> (l	Mapping	g of CO	s with PC)s and PS	Os)		
PO-PSO	DO1	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02												
CO	FUI	F02	105	104	105	100	10/	100	109	1010	rom	F012	1301	1502
CO1	2	1	1	1	0	0	1	0	2	2	0	1	0	0
CO2	2	1	3	1	0	0	2	0	1	0	2	1	0	0
CO3	2	1	3	0	0	0	2	0	1	1	2	0	0	0
CO4	2	0	3	0	0	0	2	0	2	0	1	2	0	0
CO5	2	1	3	2	0	0	2	0	0	0	1	2	0	0

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session:	Effective from Session: 2019-20						
Course Code	CE669	Title of the Course	Watershed Management	L	Т	Р	С
Year	II	Semester	III	3	1	0	4
Pre-Requisite	NIL	Co-requisite	NIL				
Course Objectives		o understand the basic principle of watershed management, environmental guidelines for water quality, actors of soil erosion, soil conservation practices and social aspects of watershed management					

		Course Outcomes
C	201	Students will be able to understand the Watershed, characteristics, watershed management, Typical watershed problems,
C	.01	Principles of watershed management, Watershed management policies and National water policy
6	202	Students will be able to understand the Water quality, pollution, Types and sources of pollution, water quality modeling and
C	.02	Environmental guidelines for water quality
		Students will be able to understand Sustainable watershed management, Principles, Natural resources management,
C	CO3	Sustainable land management practices, Soil erosion: causes, processes, erosion factors, Water erosion, Types, Estimation
		of soil loss Wind erosion and Soil conservation practices.
C	CO4	Students will be able to understand the Social aspects of watershed management: Community participation, Private sector
C	.04	participation, Socio-economy Integrated development, Water legislation and implementations
C	CO5	Students will be able to understand Standard modeling approaches, system concept for watershed modeling, modeling of
C	.05	rainfall, runoff process, subsurface flows and groundwater flow.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO		
1	Introduction	Watershed, characteristics, Watershed deterioration, Typical watershed problems, Principles of watershed management, Introduction to watershed management, Different stakeholders and their relative importance, watershed management policies and National water policy.	08	CO1		
2	Management of Water Quality	Water quality and pollution, Types and sources of pollution, water quality modeling, water quality modeling, Environmental guidelines for water quality.	08	CO2		
3	Sustainable Watershed Management	Sustainable watershed management, Principles, Natural resources management, Sustainable land management practices, Soil erosion: causes, processes, erosion factors, Water erosion, Types, Estimation of soil loss wind erosion estimation of soil loss, Wind erosion, Soil conservation practices.	08	CO3		
4	Socio-economic Aspects of Watershed Management	Social aspects of watershed management: Community participation, Private sector participation, Institutional issues, Socioeconomy Integrated development, water legislation and economy, Integrated development, Water legislation and implementations, Case studies.	08	CO4		
5	Watershed Modeling	Standard modeling approaches and classifications, system concept for watershed modeling, overall description of different hydrologic processes, modeling of rainfall, runoff process, subsurface flows and groundwater flow.	08	CO5		
Refere	ence Books:					
		Applied Hydrology. Mc Graw-Hill, New York				
Rattan	Lal. Soil Erossion in	n the Tropics. McGraw-Hill New York				
		Management,"New age International publishers New Delhi				
	Das Madan Mohan, "Watershed Management," PHI Learning publishers					
	ning Source:					
https://	https://nptel.ac.in/courses/105101010/					

				Course	Articul	ation M	atrix: (I	Mapping	g of CO	s with PC	os and PS	Os)		
PO-PSO	PO1	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02								PSO2				
CO	roi	F02	105	104	105	100	10/	100	109	1010	rom	F012	1501	1502
CO1	2	1	1	1	0	0	1	0	2	2	0	1	0	0
CO2	2	1	3	1	0	0	2	0	1	0	2	1	0	0
CO3	2	1	3	0	0	0	2	0	1	1	2	0	0	0
CO4	2	0	3	0	0	0	2	0	2	0	1	2	0	0
CO5	2	1	3	2	0	0	2	0	0	0	1	2	0	0

Nome & Sign of Decayon Coordinator	Sim & Seel of HoD
Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session:	Effective from Session: 2019-20						
Course Code	CE670	Title of the Course	Earth and Rock Fill Dams	L	Т	Р	С
Year	II	Semester	III	3	1	0	4
Pre-Requisite	NIL	Co-requisite	NIL				
Course Objectives		o understand the method of construction of earthen and rock fill dam, method of controlling of seepage earthen dam and protection of the slops.					

	Course Outcomes
CO	To understand the basic concept of earthen dam their types cause of failure, Methods of construction, Pore-Water Pressure and its Significance in the Design of Earth Dams
CO2	To understand about the Seepage Discharge through the Soil, Phreatic line and Determination of Phreatic Line for Homogeneous section with a Horizontal Filter and without Filter
CO	To understand how to control seepage through the embankment and foundation of the earthen dam and how to design the filter and protection of slop.
CO ₄	To understand about the location of slip circle and stability of slope during the sudden drawdown and steady seepage
CO	To understand about the rockfill dams, placement of material and compaction and design of rockfill dams

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO				
1	Earthen Dam	Introduction : Earthen dam, Types of earthen dam, Methods of construction , Cause of failure of earthen dam, ShearingStrength of Soils, Various Kinds of Densities and Their Relations, Pore-Water Pressure and its Significance in the Design of Earth Dams	08	CO1				
2	Seepage Analysis	\sim 1 line Determination of Phreatic Line for Homogeneous section with a Horizontal L UX L (U)/						
3	Seepage Control in Earth Dams	SeepageControlThroughEmbankments,SeepageControlThroughFoundations, Design of Filters, Protection of Upstream Slope,O8CO3Downstream Slope08CO3						
4	4 Stability of Slopes Stability of Slopes Stress relationship and shear parameters, Swedish Slip Circle Method or The Slices Method. Location of Centre of Slip Circle, Stability of Downstream Slope during Steady Seepage , Stability of Upstream Slope During Sudden Drawdown , Stability of the foundation against Shear CO4							
5	Rock Fill Dam	Definition and Types of Rockfill Dams, Foundation Design for Rockfill Dams,						
Refere	ence Books:							
Sharm	a H. D., "Embankme	ent Dams," Oxford and IBH Pub., 1991						
B. Sing	gh and R. S. Varshne	y, "Engineering for Embankment Dams," A. A. Balkema Publishers						
		Gregor., "Geotechnical Engineering of Dams," David Stapledon, Graeme Bell., CF	C Press					
IS 789	4 (1975): Code of pr	actice for stability analysis of Earth dams						
e-Lear	rning Source:							

https://nptel.ac.in/content/storage2/courses/105105110/pdf/m4l04.pdf

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)												
PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO	101	10-	100		100		- 0.			1010			1001	1001
CO1	3	3	3	1	0	2	3	0	0	0	2	2	2	3
CO2	3	3	1	2	0	2	0	0	1	0	1	1	2	3
CO3	2	3	1	1	0	2	0	0	0	0	1	1	2	3
CO4	2	1	1	3	0	2	0	0	0	0	1	1	2	3
CO5	3	1	3	1	0	2	1	0	1	0	2	2	2	3

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session:	Effective from Session: 2016-17											
Course Code	CE675	Title of the Course	Directed Study	L	Т	Р	С					
Year	Π	Semester	III	0	0	0	4					
Pre-Requisite	NIL	Co-requisite	NIL									
Course Objectives	• To ma	To make learner aware about the latest technology and engineering practices in industries.										

Course Outcomes

CO1 Awareness regarding the latest technology, engineering methodology and practices being used in industries.

Unit	Content of Unit	Contact	Mapped
No.		Hrs.	CO
1	Undergo industrial training in any respective industry in order to get familiar with the latest technology, engineering techniques and practices being used in the industry. Have to absorb some skill from the training identifying the area of improvement. The concepts/skills must be clearly understood and presented by the student. A hard copy of the report should be submitted to the Department after the completion of directed study.	03hrs	CO1 and CO2

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)												
PO-PSO	PO1	PO2	PO3	PO4	PO5	DO6	PO7	DOS	DO	PO10	PO11	PO12	PSO1	PSO2
СО	roi	F02	105	104	105	100	10/	100	109	1010	rom	F012	1501	1502
CO1	0	0	0	3	3	3	0	0	3	3	0	3	3	3

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session:	2016-17						
Course Code	CE699	Title of the Course	M Tech dissertation	L	Т	Р	С
Year	Π	Semester	III and IV	0	0	0	20
Pre-Requisite	NIL	Co-requisite	NIL				
Course Objectives	 To nut To imp To dev 	velop skill to use various e velop skill to think critical	rature review. ity for formulation of plan. ngineering and technological tools.				

	Course Outcomes								
CO1	Capability to work independently on a research-based problem.								
CO2	Skill to perform review of available literature effectively to present research gap.								
CO3	Aptitude to plan methodology for the attainment of various research objectives.								
CO4	Competency to apply of various engineering and technological tools to carry research.								
CO5	Ability to conclude work using critical thinking.								
CO6	Proficiency in preparing presentation and report.								

Unit	Content of Unit	Contact	Mapped
No.		Hrs.	CO
1	Undergo industrial training in any respective industry in order to get familiar with the latest technology, engineering techniques and practices being used in the industry. Have to absorb some skill from the training identifying the area of improvement. The concepts/skills must be clearly understood and presented by the student. A hard copy of the report should be submitted to the Department after the completion of directed study.	03hrs	CO1, CO2, CO3, CO4, CO5 and CO6

				Course	Articul	ation M	latrix: (I	Mappin	g of CO	s with PC)s and PS	Os)		
PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO	FUI	F02	105	104	105	100	10/	100	109	1010	rom	F012	1301	1502
CO1	0	0	0	3	3	0	0	3	3	3	0	3	0	3
CO2	0	0	0	3	3	0	0	3	3	3	0	3	0	3
CO3	0	0	0	0	3	0	0	0	3	3	0	3	0	3
CO4	0	0	0	3	3	0	0	0	3	0	0	3	0	3
CO5	0	0	0	3	3	0	0	3	3	3	0	3	0	3
CO6	0	0	0	0	3	0	0	3	3	3	0	3	0	3

Name & Sign of Program Coordinator	Sign & Seal of HoD